MAb4 Antibody Reference Panel

The Mab4 antibody reference panel is a mixture of glycans commonly found on monoclonal antibodies: G2F(NA2F), G0F(NGA2F), and both G1F isomers.

View product documentation/CofA as PDF
Download Non-hazardous SDS

10 µg

Part Number: SA-MAB4


Product Description


The MAb4 antibody reference panel is a mixture of glycans commonly found on monoclonal antibodies which includes G2F(NA2F), G0F(NGA2F), and both G1F(FA2G1) isomers.

“Glycosylation can significantly affect the in vivo safety and efficacy profiles of therapeutic recombinant monoclonal antibodies (rMAbs). In particular, glycans can have a marked influence on IgG Fc effector functions and changes in antibody glycosylation are a major cause of batch-to-batch variability during production. For these reasons, it is essential to measure and control antibody glycosylation accurately and reliably.” This introduction was copied from Dr. Daryl Fernandes’ article Demonstrating Comparability of Antibody Glycosylation during Biomanufacturing

Form: Dry. Dried by centrifugal evaporation from an aqueous solution.

Molecular Weight:
G2F 1787
G1F 1624
G0F 1463

Purity: > 90% pure as assessed by a combination of 1 H-NMR and HPLC, and CE

Storage: -20˚C both before and after dissolution. This product is stable for at least 5 years as supplied. View Certificate of Stabilty

Shipping: The product can be shipped at ambient when dry. After dissolution, ship on dry ice.

Handling: Allow the unopened vial to reach ambient temperature and tap unopened on a solid surface to ensure that most of the lyophilized material is at the bottom of the vial. Gently remove the cap, add the desired volume of reconstitution medium, re-cap and mix thoroughly to bring all the oligosaccharide into solution. For maximal recovery of oligosaccharide, ensure that the cap lining is also rinsed and centrifuge the reconstituted vial briefly before use. Ensure that any glass, plasticware or solvents used are free of glycosidases and environmental carbohydrates. Minimise exposure to elevated temperatures or extremes of pH. High temperatures and low pH will cause desialylation. High pH will cause epimerisation of the reducing terminus GlcNAc.

Safety: This product is non-hazardous and has been purified from natural sources certified to be free of all hazardous material including pathogenic biological agents.


Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of Recombinant Antibodies: Analytics and Functional Impact. Biotechnol J. 2018 Jan;13(1). doi: 10.1002/biot.201700476. Epub 2017 Sep 25. Review.

Sha S, Agarabi C, Brorson K, Lee DY, Yoon S. N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies. Trends Biotechnol. 2016 Oct;34(10):835-846. doi: 10.1016/j.tibtech.2016.02.013. Epub 2016 Mar 22. Review

Liu L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J Pharm Sci. 2015 Jun;104(6):1866-1884. doi: 10.1002/jps.24444. Epub 2015 Apr 14.

Jefferis R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci. 2009 Jul;30(7):356-62. doi: 10.1016/ Epub 2009 Jun 22. Review.

Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 21: pp11-16, 2005

Fernandes D. Demonstrating Comparability of Antibody Glycosylation during Biomanufacturing. European Biopharmaceutical Review. Summer 2005. pp 106 -110